Основные алгоритмы кластеризации ключевых запросов

Рефракторы (линзовые телескопы)

Рефракторы – это первые телескопы, изобретенные человеком. В таком телескопе за сбор света отвечает двояковыпуклая линза, которая выступает в роли объектива. Ее действие строится на основном свойстве выпуклых линз – преломлении световых лучей и их сборе в фокусе. Отсюда и название – рефракторы (от латинского refract – преломлять).

Рефрактор Галилея был создан в 1609 году. В нем были использованы две линзы, с помощью которых собиралось максимальное количество звездного света. Первая линза, которая выступала в роли объектива, была выпуклой и служила для сбора и фокусировки света на определенном расстоянии. Вторая линза, играющая роль окуляра, была вогнутой и использовалась для превращения сходящего светового пучка в параллельный. С помощью системы Галилея можно получить прямое, неперевернутое изображение, качество которого сильно страдает от хроматической аберрации. Эффект хроматической аберрации можно увидеть в виде ложного прокрашивания деталей и границ объекта.

Рефрактор Кеплера – более совершенная система, которая была создана в 1611 году. Здесь в роли окуляра использовалась выпуклая линза, в которой передний фокус был совмещен с задним фокусом линзы-объектива. От этого итоговое изображение было перевернутым, что не принципиально для астрономических исследований. Главное преимущество новой системы – возможность установки измерительной сетки внутри трубы в точке фокуса.

Для данной схемы также была характерна хроматическая аберрация, впрочем эффект от нее можно было нивелировать, увеличив фокусное расстояние. Именно поэтому телескопы того времени имели огромное фокусное расстояние с трубой соответствующего размера, что вызывало серьезные трудности при проведении астрономических исследований.

В начале XVIII века появился ахроматический рефрактор, который популярен и в сегодняшние дни. Объектив данного прибора сделан из двух линз, изготовленных их различных сортов стекла. Одна линза – собирающая, вторая – рассеивающая. Такая структура позволяет серьезно уменьшить хроматическую и сферическую аберрации. А корпус телескопа остается весьма компактным. Сегодня созданы рефракторы апохроматы, в которых влияние хроматической аберрации сведено к возможному минимуму.

Достоинства рефракторов:

  • Простая конструкция, легкость в эксплуатации, надежность;
  • Быстрая термостабилизация;
  • Нетребовательность к профессиональному обслуживанию;
  • Идеален для исследования планет, Луны, двойных звезд;
  • Превосходная цветопередача в апохроматическом исполнении, хорошая – в ахроматическом;
  • Система без центрального экранирования от диагонального или вторичного зеркала. Отсюда высокая контрастность изображения;
  • Отсутствие воздушных потоков в трубе, защита оптики от грязи и пыли;
  • Цельная конструкция объектива, не требующая регулировок со стороны астронома.

Недостатки рефракторов:

  • Высокая цена;
  • Большой вес и габариты;
  • Небольшой практический диаметр апертуры;
  • Ограниченность в исследовании тусклых и небольших объектов в далеком космосе.

Строительство, модернизация

В ночь на 15 декабря 2006 года, четвертый и последний дополнительный телескоп (АТ4) получил свой “First Light”. Первые изображения показывают, что АТ4 сможет получать изображения превосходного качества уже полученного по первым трем ATs.

В мае 1998 г. было завершено строительство первого из четырёх телескопов и на нём был получен «первый свет». Остальные телескопы были построены вскоре, в 1999 и 2000 годах. Также были построены четыре 1,8-метровых Вспомогательных Телескопа (Auxiliary Telescopes, AT). Эти AT были построены с 2004 по 2007 годы.

В марте 2011 года впервые осуществлялась попытка использовать зеркала как единую систему, но тогда не получилось стабильной согласованной работы. В конце января 2012 удалось соединить все четыре основных телескопа в режим интерферометра. В результате VLT стал эквивалентен по угловому разрешению телескопу со сплошным зеркалом в 130 метров, что сделало его самым большим наземным оптическим телескопом Земли.

Для получения 130-метрового виртуального зеркала было бы достаточно соединить два наиболее удаленных друг от друга основных телескопа обсерватории Паранал. Однако чем больше инструментов работает в связке, тем более качественной получается картинка. В частности, вспомогательные телескопы (AT) были разработаны для повышения четкости в изображении, получаемом с помощью четырёх основных зеркал. Французский астроном Жан-Филипп Бергер рассказал о VLT:

“С двумя телескопами вы можете следить за звездами, определять их диаметр, или же за двойными звездами, вычисляя расстояние между ними. С четырьмя аппаратами уже можно думать о тройных звездных системах и молодых светилах, окруженных протопланетными облаками, из которых формируются планеты. Список доступных нам объектов значительно расширился.”

Монтировка

Большинство современных рефракторов имеют экваториальную подвеску. Такая монтировка позволяет нацеливать телескоп на небесный объект. При этом полярная ось инструмента располагается параллельно земной оси и поддерживает ось склонения. Ось склонения позволяет устанавливать различные углы наклона при вращении телескопа вокруг полярной оси с учетом прямого восхождения, измеряемого вдоль небесного экватора от точки его пересечения Солнцем в первый день весны.

Склонение и прямое восхождение – координаты, определяющие положение объекта на небесной сфере. Склонение является аналогом широты, а прямое восхождение – долготы. На оси нанесены деления, которые позволяют наблюдателю точно нацелить телескоп. Для отслеживания объекта полярная ось инструмента плавно приводится в действие электродвигателем со скоростью, равной скорости вращения Земли по отношению к звездам. Если сидерическая скорость двигателя очень точна, то наблюдения можно проводить в течение длительного периода времени. Крупные обсерватории для этого используют либо кварцевые, либо атомные часы.

Подземные нейтринные детекторы

Помимо нескольких подводных нейтринных детекторов существуют также подземные детекторы, работающие по тому же принципу. Их отличие в том, что для детектирования используется искусственный резервуар со специальной водой. Также благодаря своему расположению данные телескопы используют земные породы в качестве фильтра частиц, избавляющих детекторы от регистрации стороннего (фонового) излучения, вроде космического.

Super-Kamiokande

Super-Kamiokande в Токио

Наибольшим подземным нейтринным детектором является Super-Kamiokande, который располагается несколько севернее Токио, в цинковой шахте на глубине 1 км. Детектор представляет собой резервуар диаметром 40 метров и высотой 42 метра, который состоит из нержавеющей стали. Он заполнен 50 000 тонн очищенной воды. На стенах резервуара находятся 11 146 фотоумножителей, высокая чувствительность которых позволяет зарегистрировать даже один квант света. Постройка Super-Kamiokande была завершена в

Схема Super-Kamiokande

далеком 1996-м году и с тех пор количество его фотоэлектронных умножителей растет.

SNO

Еще один детектор, в разы меньший Super-Kamiokande, расположен около канадского города Садбери в шахте на глубине двух километров — Sudbury Neutrino Observatory. SNO – акриловая сфера диаметром 12 метров и толщиной стенок – 5,5 см, которая заполнена тяжелой водой D2O и покрыта 9 600 фотоумножителями. Сама сфера располагается в резервуаре с чистой водой, во избежание попадания в детектор продуктов распада тория и урана, которые рождаются в горной породе снаружи шахты. SNO не рассчитан на регистрацию нейтрино из дальних уголков космоса, а используется для изучения нейтринного излучения Солнца. Прослужив с 1999-го по 2006-й год, на данный момент детектор завершает процесс переоборудования. Была запланирована замена тяжелой воды

SNO

на жидкий линейный алкилбензол, который увеличит чувствительность детектора.

Помимо упомянутых детекторов, основанных на эффекте Вавилова — Черенкова, существует множество иных детекторов, работающих по другому принципу. Зачастую такие детекторы регистрируют нейтрино посредством его взаимодействия с более тяжелыми материалами, чем вода, и предназначены скорее не для наблюдения за Вселенной, а для изучения свойств самих нейтрино.

Виды телескопов в астрономии

Разновидности телескопов в астрономии связаны с различными способами построения. Если точнее, то применением различных инструментов в качестве объектива. Кроме того, имеет значение для какой цели нужно устройство. На сегодняшний день существует несколько основных типов телескопов в астрономии. В зависимости от светособирающего компонента они бывают линзовые, зеркальные и комбинированные.

Линзовые телескопы (диоптрические)

По другому, их называют рефракторами. Это самые первые телескопы. В них свет собирается линзой, которая с двух сторон ограничена сферой. Поэтому она считается двояковыпуклой. К тому же, линза является объективом. Что интересно, можно использовать не просто линзу, а целую систему из них.

Линзовый телескоп

Стоит заметить, что выпуклые линзы преломляют лучи света и собирают их в фокус. А в нём, в свою очередь, строится изображение. Для того, чтобы его рассмотреть применяют окуляр

Что важно, линза устанавливается так, чтобы фокус и окуляр совпадали. Кстати, Галилео изобрёл именно рефрактор

Но современные приборы состоят из двух линз. Одна из них собирает свет, а другая рассеивает. Что позволяет уменьшить отклонения и погрешности.

Зеркальные телескопы (катаптрические)

Также их называют рефлекторы. В отличие от линзового типа, объектив у них это вогнутое зеркало. Оно собирает свет звезды в одной точке и отражает его на окуляр. При этом погрешности минимальны, а разложение света на лучи отсутствует полностью. Но использование рефлектора ограничивает поле зрения наблюдателя. Что интересно, зеркальные телескопы самые распространённые в мире. Потому как разработка их намного легче, чем, например, линзовых приборов.

Зеркальный телескоп Ньютона

Катадиоптрические телескопы (комбинированные)

Это зеркально-линзовые приборы. В них для получения изображения применяют и линзы, и зеркала.

В свою очередь, их разделили на два подвида: 1) телескопы Шмидт-Кассегрена-в них в самом центре кривизны зеркала установлена диафрагма. Тем самым происходит исключение сферических нарушений и отклонений. Но увеличивается поле зрения и качество изображения. 2) телескопы Максутова-Кассегрена-в районе фокальной плоскости установлена плоско-выпуклая линза. В результате предотвращается кривизна поля и сферическое отклонение.

Катадиоптрический телескоп

Стоит отметить, что в современной астрономии чаще применяются именно комбинированный вид приборов. В результате смешения двух разных элементов для собирания света они позволяют получать более качественные данные.

Радиотелескопы

Такие устройства способны принимать исключительно одну волну сигналов. С помощью антенн происходит передача сигналов и обработка их в изображения. Радиотелескопы используются астрономами для научных исследований.

Радиотелескопы

Инфракрасные модели телескопов

Они по своей конструкции очень схожи с оптическими зеркальными телескопами. Принцип получения изображения практически аналогичен. Лучи отражаются объективом и собираются в одной точке. Далее специальный прибор измеряет тепло и фотографирует полученный результат.

Инфракрасный телескоп

Мультизеркальные телескопы

Основная причина, по которой астрономы строят большие телескопы, заключается в увеличении светосилы, которая позволяет глубже заглянуть во Вселенную. К сожалению, стоимость создания рефракторов возрастает в кубической зависимости от диаметра зеркала. Таким образом, для достижения цели при сохранении расходов необходимы новые, более экономичные конструкции.

Два 10-м мультизеркальных телескопа обсерватории Кека являются примером таких усилий. Первый был установлен на вулкане Мауна-Кеа, который находится на одном из гавайских островов, в 1992 г., а второй был завершен в 1996-м. Каждый из них состоит из 36 смежных регулируемых зеркальных сегментов, управляемых компьютером.

Первый телескоп

Известно, что первый телескоп создал Галилео Галилей. Хотя немногие знают, что он использовал ранние открытия других учёных. Например, изобретение зрительной трубы для мореплавания.Кроме того, мастера по стеклу уже создали очки. Вдобавок, использовались линзы. И эффект преломления и увеличения стекла был более или менее изучен.

Первый телескоп Галилея

Безусловно, Галилео добился значительного результата в исследовании данной области. К тому же, он собрал и усовершенствовал все наработки. И в итоге, разработал и представил первый в мире телескоп. По правде, он имел лишь трёхкратное увеличение. Но отличался высоким на тот момент качеством изображения.

Кстати, именно Галилей назвал свой разработанный объект телескопом.В дальнейшем, учёный не остановился на достигнутом

Он усовершенствовал прибор до двадцати кратного увеличения картинки.Важно, что Галилео не только разработал телескоп. Более того, он первым использовал его для исследования космоса

Кроме того, он сделал массу астрономических открытий.

Галилео Галлилей

Современные телескопы

Телескоп это оптический прибор для наблюдений. Изобрели его почти полвека назад. На протяжении этого времени, учёные меняли и усовершенствовали устройство. Действительно, создано много новых моделей. В отличие от первых они имеют повышенное качество и увеличение изображения.

В нашем веке технологий используются компьютерные телескопы. Соответственно, они оснащены специальными программами

Что важно, современный прототип учитывает, что у каждого человека восприятие глаз разное. Для высокой точности картинку передают на монитор

Таким образом изображение воспринимается таким, какое оно на самом деле есть. Вдобавок, данный способ наблюдения исключает любые искажения.

Современный телескоп

Кроме того, учёные нашего поколения применяют одновременно не одно устройство, а несколько. Более того, к телескопу подключают уникальные камеры, которые передают информацию на компьютер. Это позволяет получать чёткие и точные сведения. Которые, разумеется, используют для изучения и исследования космических просторов.

Что интересно, сейчас телескопы не просто приборы для наблюдения. Но также устройства для измерения расстояний между космическими объектами. Для этой функции к ним подключают спектрографы. И взаимодействие этих приборов предоставляет конкретные данные.

Другая классификация

Есть еще и другие виды телескопов. Но используются они по своему отдельному назначению. Например, рентгеновские и гамма-телескопы. Или ультрафиолетовые устройства, которые фильтруют картинку без обработки и засвечивания. Кроме того, можно разделить приборы на профессиональные и любительские. Первые используются учёными и астрономами. Очевидно, что вторые подходят для домашнего применения.

Гамма телескоп Hess

Первый изобретатель

Телескопические устройства появились в семнадцатом веке. Однако по сей день ведутся дебаты, кто изобрел телескоп первым – Галилей или Липперсхей. Эти споры связаны с тем, что оба ученых примерно в одно время вели разработки оптических устройств.

В 1608 году Липперсхей разработал очки для знати, позволяющие видеть удаленные объекты вблизи. В это время велись военные переговоры. Армия быстро оценила пользу разработки и предложила Липперсхею не закреплять авторские права за устройством, а доработать его так, чтобы в него можно было бы смотреть двумя глазами. Ученый согласился.

Новую разработку ученого не удалось удержать втайне: сведения о ней были опубликованы в местных печатных изданиях. Журналисты того времени назвали прибор зрительной трубой. В ней использовалось две линзы, которые позволяли увеличить предметы и объекты. С 1609 года в Париже вовсю продавали трубы с трехкратным увеличением. С этого года какая-либо информация о Липперсхее исчезает из истории, а появляются сведения о другом ученом и его новых открытиях.

Основные преимущества и недостатки катадиоптрических систем

Катадиоптрические системы — это синтез зеркальных и линзовых систем. Они имеют много преимуществ, но также получили в наследство и некоторые недостатки.

Преимущества
  • Главным преимуществом является простота изготовления сферического зеркала. Корректор избавляет систему от сферической аберрации, «трансформируя» её в аберрацию кривизны поля.
  • В качестве вторичного зеркала часто (хотя и не всегда) используется алюминированная центральная часть обратной стороны корректора. Вторичное зеркало — алюминированная часть корректора или отдельное — жёстко зафиксировано в оправе, в то время, как почти во всех рефлекторах вторичное зеркало держится на трёх-четырёх растяжках, что может приводить к разъюстировке и портит дифракционную картину. Катадиоптрическая система во многом свободна от этих недостатков.
  • Труба телескопа закрыта, что предотвращает загрязнение внутренних оптических элементов и снижает образование воздушных потоков внутри телескопа.
  • Трубы телескопов этого типа наиболее компактны по сравнению с другими типами телескопов (при равном диаметре и фокусном расстоянии).
Недостатки
  • Сложность изготовления корректора больших размеров. Диаметр самых больших инструментов не превышает 2 метров.
  • Большой фокус.
  • Система содержит оптические элементы из стекла, поэтому на окраине поля зрения проявляется хроматическая аберрация и кома. Стекло корректора поглощает часть света, несколько уменьшая светопропускание инструмента.
  • Проблема кривизны поля решалась использованием специального держателя, в котором плоская фотопластинка изгибалась до нужной кривизны. Изготовить же ПЗС-матрицу нужной кривизны сложно и дорого.
  • Фокус жёстко связан с длиной трубы (расстояния от зеркала до корректора — половина фокуса). Относительное отверстие также ограничено остаточными аберрациями.
  • Большое время термостабилизации оптики перед началом наблюдений.

Зеркально-линзовые системы создавались в поисках компромисса. Их применение ограничено. Малые размеры и фокус не позволяют применять их для астрофизических целей, но телескопы получили широкое распространение среди астрометристов.

Дальнейшее развитие подводных нейтринных телескопов

Три упомянутых нейтринных детектора показали принципиальную возможность регистрации космических нейтрино из дальних областей Вселенной. Однако, в то же время стало ясно, что существующие размеры детекторов крайне малы для желаемой интенсивности регистрации, и для данной цели потребуются телескопы объемом порядка кубического километра. В результате этого во всех трех местах начались работы по реализации проектов такого масштаба.

IceCube

Схема IceCube

Первым завершенным проектом стал наследник детектора AMANDA — нейтринная обсерватория IceCube («ледяной куб»), которая располагается в Антарктиде, на станции Амундсен-Скотт – прямо у Южного полюса Земли. Детекторы телескопа в виде гирлянд располагаются на глубине от 1450 до 2450 метров, каждая такая гирлянда имеет 60 фотоумножителей. Проект получил название «ледяной куб» так как общий объем, с которого производится регистрация черенковского излучения составляет 1 кубический километр. IceCube детектирует нейтрино, которые идут со стороны Земли. Такая настройка позволяет отфильтровать поток нейтрино от общего потока частиц, которые могут приходить из атмосферы или космоса. Насколько известно ученым – только нейтрино способно пролететь сквозь вещество Земли. Таким образом IceCube, находясь на Южном полюсе, улавливает частицы, приходящие с северной стороны планеты. Запуск данного современного детектора в 2011-м году ознаменовал начало эры нейтринной астрономии. К 2028-му году планируется расширить данный нейтринный телескоп до 10 кубических километров.

Несмотря на свои масштабы, установка IceCube все же имеет недостатки, которые вызваны тем, что лед все же несколько рассеивает рождаемые внутри фотоны, а потому, говоря простыми словами, получаемое изображение из космоса несколько размыто. В воде же рассеивание фотонов практически нет и точность наблюдений будут значительно точнее. Это оправдывало постройку нейтринных телескопов в двух других упомянутых местах.

KM3NeT

KM3NeT в представлении художника

В 2010-х началось создание массива нейтринных телескопов на дне Средиземного моря. В трех локациях, у берегов Франции (KM3NeT-Fr), Италии (KM3NeT-It) и Греции, планировалось расположить по два блока детекторов, каждый объемом около 0,5 кубического километра. В 2015-м году первая гирлянда детекторов KM3NeT-It была установлена недалеко от обсерватории ANTARES у берегов Сицилии и в декабре того же года новый телескоп начал регистрировать нейтрино. Каждый блок KM3NeT-It будет располагаться на глубине около 3400 метров и гирлянды высотой около 700 метров образуют область детектирования объемом 0,5 кубического километра. Оптические модули располагаются на гирлянде на расстоянии в 20 метров друг от друга. Французский детектор KM3NeT-Fr планируется поместить на глубину в 2475 метров. И хотя он будет иметь столько же узлов сколько их у KM3NeT-It, его размеры будут в 250 раз меньше итальянского, так как узлы будут значительно ближе друг к другу. В связи с этим KM3NeT-Fr сможет заняться поиском нейтрино меньших масс. Завершение установки всех шести блоков KM3NeT планируется к 2025-му году.

Baikal-GVD

Погружение части телескопа Байкал

Кубокилометровая версия нейтринного телескопа разрабатывается и в России. Так коллаборация «Байкал» в 2015-м году развернула первый кластер гирлянд под названием «Дубна». Кластер представляет собой 192 сферических оптических модуля, расположенных на нескольких гирляндах на глубине 1300 метров на дне озера Байкал. К 2020-му году планируется развертывание установки из 10-12 кластеров, общим объем которых составит около 0,5 кубического километра.

Для совместного анализа данных с трех наибольших нейтринных детекторов все три коллаборации («Байкал», коллаборации обсерваторий KM3NeT и IceCube) объединились в международный консорциум — Глобальная нейтринная обсерватория.

Расположение трех подводных нейтринных телескопов

Как выбрать телескоп для любителей астрономии

Выбор телескопа для любителей астрономии основывается на том, что же вы хотите наблюдать. В принципе, выше описаны виды и характеристики приборов. Вам просто нужно выбрать какой больше нравится. Лучше, на мой взгляд остановиться на линзовом, либо комбинированном виде. Но выбирать, разумеется, вам.

Астрономы

По данным интернета, лучшие любительские телескопы представлены фирмами: Celestron, Bresser и Veber.

Создание и разработка телескопа, на самом деле, позволили сделать огромный шаг в исследовании космоса. Вероятно, всё, что мы знаем сформировалось с помощью этого прибора. Хотя, конечно, не стоит приуменьшать саму деятельность учёных.
Сегодня мы рассмотрели некоторые типы телескопов и их характеристики. Однозначно, виден прогресс технологий. И как результат, мы узнали множество интересного о космических объектах и самом космосе. Кроме того, мы можем любоваться прекрасным небом и знакомиться с ним благодаря этому чудесному изобретению.

Система Шмидта

Не следует путать с системой Шмидта — Ньютона.

Принцип действия системы, позже Шмидт установил на место ограничивающей диафрагмы корректор сферической аберрации

Оптическая схема телескопа Шмидта — Кассегрена

В 1930 году эстонско-германский оптик, сотрудник Гамбургской обсерватории Бернхард Шмидт установил в центре кривизны сферического зеркала диафрагму, сразу устранив и кому, и астигматизм. Для устранения сферической аберрации он разместил в диафрагме линзу специальной формы, которая представляет собой поверхность 4-го порядка. В результате получилась фотографическая камера с единственной аберрацией — кривизной поля и удивительными качествами: чем больше светосила камеры, тем лучше изображения, которые она даёт, и больше поле зрения.

Телескоп Шмидта — Кассегрена

В 1946 году Джеймс Бэкер установил в камере Шмидта выпуклое вторичное зеркало и получил плоское поле. Несколько позже эта система была видоизменена и стала одной из самых совершенных систем: Шмидта — Кассегрена, которая на поле диаметром 2 градуса даёт дифракционное качество изображения. В качестве вторичного зеркала обычно используется алюминированная центральная часть обратной стороны корректора.

Телескоп Шмидта очень активно используется в астрометрии для создания обзоров неба.
Основное его преимущество — очень большое поле зрения, до 6°. Фокальная поверхность является сферой, поэтому астрометристы обычно не исправляют кривизну поля, а вместо этого используют выгнутые фотопластинки.

Система Максутова

Оптическая схема телескопа Максутова — Кассегрена

В 1941 году Д. Д. Максутов нашёл, что сферическую аберрацию сферического зеркала можно компенсировать мениском большой кривизны. Найдя удачное расстояние между мениском и зеркалом, Максутов сумел избавиться от комы и астигматизма. Кривизну поля, как и в камере Шмидта, можно устранить, установив вблизи фокальной плоскости плоско-выпуклую линзу — так называемую линзу Пиацци-Смита.

Проалюминировав центральную часть мениска, Максутов получил менисковые аналоги телескопов Кассегрена и Грегори. Были предложены менисковые аналоги практически всех интересных для астрономов телескопов. В частности, в современной любительской астрономии часто применяются телескопы Максутова — Кассегрена, и, в меньшей степени, Максутова — Ньютона и Максутова — Грегори.

Телескоп Максутова — Кассегрена диаметром 150 мм

Следует отметить, что существует два основных типа телескопов Максутова — Кассегрена, различие между которыми состоит в типе вторичного зеркала. В одном случае вторичное зеркало, как было указано выше, является алюминированным кружком на внутренней поверхности мениска. Это упрощает и удешевляет конструкцию. Однако, так как радиусы кривизны внешней и внутренней поверхности мениска одинаковы, для устранения сферической аберрации до приемлемых величин приходится увеличивать фокальное отношение системы. Поэтому абсолютное большинство коммерчески выпускающихся небольших телескопов любительского класса являются длиннофокусными и имеют фокальное отношение порядка 1/12—1/15.

Телескопы этого типа в англоязычных источниках обозначаются как Gregory–Maksutov или Spot–Maksutov, поскольку патент на такую схему (и тип вторичного зеркала) был выдан американскому оптику и инженеру Джону Грегори (John F. Gregory, 1927—2009). Первым коммерческим любительским телескопом такого типа был Questar, выпущенный в 1954 г.

Для создания более светосильных систем и телескопов высокого класса применяют отдельное вторичное зеркало, крепящееся к мениску. Наличие отдельного зеркала позволяет придать ему необходимую геометрическую форму, не изменяя при этом конструкцию мениска. В англоязычных источниках данный вариант телескопа Максутова обозначается как Maksutov–Sigler или Maksutov–Rutten.

Сколько окуляров должно быть в распоряжении астронома-любителя

Как правило, энтузиасты ночного неба длительное время обходятся только парой из длиннофокусного и короткофокусного окуляров. Впрочем, со временем неизбежно возникает желание подкупить еще несколько элементов для различных увеличений. Например, имея телескоп с f/10, вы можете приобрести комплект из окуляров на 9 и 25 мм, расширив его окулярами 15 и 6 мм.

Высокую эффективность демонстрирует двухкратная линза Барлоу, вдвое поднимающая увеличения окуляра любой модели. Таким образом, при необходимости можно, к примеру, заменить окуляр в 3 мм окуляром в 6 мм, дополненным линзой Барлоу.

С помощью набора качественных окуляров можно не проводить перефокусировку, что значительно упрощает процесс наблюдений.

Схемы окуляров

Окуляр Гюйгенса был изобретен Христианом Гюйгенсом в XVII веке и на данный момент признан устаревшим. Однако периодически его можно увидеть в окулярах с маркировкой «H», которые характерны для недорогих телескопов. Маленькие поле зрения и вынос зрачка.

Большей производительностью отличается окуляр Рамсдена, изобретенный в XVIII веке, но и он не соответствует современным требованиям к оптическому оборудованию.

Окуляр Кельнера представляет собой трехэлементный кельнер и на данный момент входит в сегмент наиболее доступных приборов профессионального уровня. Позволяет получать максимально контрастные картинки при среднем и малом увеличении. Оптимальная эффективность его работы достигается вкупе с малыми и средними телескопами. Поле зрения – порядка 40˚и достойный вынос зрачка.

Ортоскопический окуляр – универсальный оптический прибор, который некоторое время назад был лучшим представителем своего класса. Однако сейчас он явно проигрывает конкурентам по ширине поля зрения. Ортоскопический окуляр обладает отличной цветопередачей, четкостью, контрастностью и внушительным выносом зрачка. Идеальны для наблюдения Луны и планет.

Окуляр Плёссла – наиболее востребованная на данный момент схема, которая обеспечивает непревзойденное качество картинки, оптимальный вынос зрачка и размер видимого поля в 50˚. Отличная четкость и высочайшая контрастность – все это характерные особенности качественных окуляров данного типа. универсальны для всех видов исследований.

Окуляр Эрфле представляет собой пяти-шестиэлементную систему, полностью оптимизированную для видимого поля 60-70˚. Особенно эффектные виды звездных ландшафтов получаются при небольшом увеличении. При большом увеличении теряется четкость картинки по краям.

Современные схемы из 6-8 элементов позволяют расширить поле зрения до 85˚. Астроному даже приходится вращать глазами, чтобы охватить взором всю панораму. Такая «свобода» приходится по душе не каждому. Линзовые элементы способствуют дополнительному увеличению светопотери в окуляре, однако общее качество изображения остается на высоте. Цену таких приборов сложно назвать доступной.

И так, выбирая схему окуляра, в первую очередь, нужно определить, какие объекты вы планируете исследовать и какие требования вы предъявляете к качеству картинки

Важное значение имеют и ваши финансовые возможности

На данный момент разработан ряд стандартов диаметра посадочных втулок окуляров. Это: 2″ (50,8 мм), 1,25″ (31,75 мм), 0,965″ (24,5 мм). Дешевые телескопы обычно комплектуются самым маленьким окуляром. Окуляр среднего размера характерен для телескопов любительского уровня. А диаметр 2” – это параметр профессионального оборудования.

Окуляры с сеткой штрихов или нитей, как правило, используются для выравнивания оптический осей искателя и телескопа, гидирования во время астрофотографической съемки, настройки полярной оси по технологии дрейфа. Кроме того, они используются с целью измерения малых углов. При этом окуляры подсвечиваются красным светодиодом с настраиваемой яркостью.

У каждого телескопа есть свой предел увеличения. Если он превышен, картинка стремительно теряет в качестве. Выбирая окуляр, нужно учитывать данный факт. Расчет увеличения производится через деление фокусного расстояния объектива на фокусное расстояние окуляра. Отсюда – фокусное расстояние окуляра можно получить, разделив фокусное расстояние объектива на увеличение. К примеру, для телескопа с 2000-миллиметровым расстоянием и 20-миллиметровым окуляром характерно 100х увеличение.

Апертура также определяет максимально полезное увеличение оптики. Большой телескоп аккумулирует больше света, делая картинку более четкой. Свое значение имеет и диаметр выходного зрачка. Вычислить его можно, разделив апертуру телескопа на увеличение или фокусное расстояние окуляра на фокусное расстояние телескопа. При этом, размер выходного зрачка должен быть меньше размера зрачка астронома, чтобы световой пучок полностью проникал в глаз. У молодых людей диаметр зрачка в ночное время равен 7 мм, однако с годами данный параметр снижается и в пожилом возрасте достигает 5 мм. вместе с тем, выходной зрачок диаметром 1 мм и менее характеризуется наличием области бесполезного увеличения, при котором сильно страдает качество картинки.

Добавить комментарий